Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, two pairs of 0D chiral copper iodide clusters were synthesized. The structural rigidity is increased by halogen modulation to obtain a near unity PLQY. The applications in white LED and X-ray imaging are extremely promising.more » « lessFree, publicly-accessible full text available May 13, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available March 20, 2026
-
New Insights into Nonthermal Plasma-Assisted Poly(vinyl alcohol) Depolymerization Catalyzed by TiO 2Free, publicly-accessible full text available March 13, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Using ligand exchange on FAPbI3 perovskite nanocrystals (PNCs) surface with chiral tridentate L-cysteine (Lcys) ligand, we successfully prepared chiral FAPbI3 PNCs that show circularly polarized luminescence (CPL) (dissymmetry factor; glum = 2.1 × 10−3) in the near-infrared (NIR) region from 700 to 850 nm and a photoluminescence quantum yield (PLQY) of 81%. The chiral characteristics of FAPbI3 PNCs are ascribed to induction by chiral L/D-cys, and the high PLQY is attributed to the passivation of the PNCs defects with L-cys. Also, effective passivation of defects on the surface of FAPbI3 PNCs by L-cys results in excellent stability toward atmospheric water and oxygen. The conductivity of the L-cys treated FAPbI3 NC films is improved, which is attributed to the partial substitution of L-cys for the insulating long oleyl ligand. The CPL of the L-cys ligand treated FAPbI3 PNCs film retains a glum of −2.7 × 10−4. This study demonstrates a facile yet effective approach to generating chiral PNCs with CPL for NIR photonics applications.more » « less
An official website of the United States government
